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We construct a theoretical, deterministic mathematical model of the dynamics of Limnothrissa miodon with nutrients, phy-
toplankton, and zooplankton and investigate the e�ect of harvesting on the population density of Limnothrissa miodon in a lake.
For the autonomous model, results from local stability analysis are in agreement with numerical simulations in that the co-
existence equilibrium is locally stable, provided certain conditions are satis�ed.  e coexistence equilibrium is globally unstable if
it is feasible. Numerical results show that a stable limit cycle exists for the nonautonomous model. Optimal control results show an
optimal harvesting monthly e�ort of 15394 boat nights which corresponds to 505 �shing units, showing that there is overcapacity
in Lake Kariba. A maximum sustainable annual catch of 34669 tonnes is obtained and simulation results show that Limnothrissa
miodon abundance is more closely related to nutrient in�ow than to harvesting.

1. Introduction

Limnothrissa miodon (Boulenger, 1906), also referred to as
kapenta, is a major source of protein and income to �shing
cooperatives, wholesalers, retailers, and the local community
[1]. Management of the Lake Kariba �shery which is shared
by both Zimbabwe and Zambia is of paramount importance
for the continued survival of the kapenta [2, 3]. Harvesting of
kapenta by �shing vessels plays an important role in the
dynamics of the sardine Limnothrissa miodon [2, 3] and as a
result, it is critical to look into the role of harvesting in its
dynamics theoretically and numerically. Harvesting of the
natural resource needs to be done in a sustainable manner so
that it is not overexploited and becomes extinct.  erefore,

mathematical modelling of the Limnothrissa miodon model
with harvesting will provide insight into the kapenta �shery
dynamics in Lake Kariba. A deterministic model involving
nutrients, plankton, and Limnothrissa miodon, as well as
harvesting by �shing vessels, has yet to be developed and
analysed. We present and analyze a deterministic contin-
uous dynamical system composed of ordinary di�erential
equations that describe the dynamics of Limnothrissa
miodon in the presence of nutrients, plankton, and har-
vesting.  e Limnothrissa miodon model will aid us in our
understanding of the dynamics of the aquatic ecosystem in
the kapenta �shery in Lake Kariba.

According to McLachlan [4], the lake productivity is
largely due to reloading of nutrients at turnover, the
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nutrient-rich sediment carried by the inflowing rivers, and
the nutrients discharged as runoff into the lake. ,e lake
loses large amounts of nutrients per year since it experiences
large outflows of between 50 and 60 km3 as compared to its
volume of 160 km3 [5]. Marshall [6] estimated the total
mortality of Limnothrissa miodon to be 0.816month−1 and
1.149 month−1 in 1978 and 1983, respectively. Moreau et al.
[7] estimated the total mortality of Limnothrissa miodon to
be between 0.37 month−1 and 0.81 month−1 in Lake Tan-
ganyika. For Lake Kariba and Lake Tanganyika, the natural
mortality rates for Limnothrissa miodon were 0.44 and 0.30
month−1, respectively, and Pauly’s empirical method was
used to estimate the parameters. According to Marshall [6],
the fishing effort to mortality relationship of Limnothrissa
miodon is 0.731month−1. From the biomass assessment
done in 1994/95, the fishing mortality was estimated to be
2.06 year−1 and 2.18 year−1 for 1993 and 1994, respectively,
for kapenta [8]. ,e Working Group Assessment [9] ob-
tained a fishing mortality of 2.1 year−1, a natural mortality of
3.5 year−1, giving a total mortality of 5.6 year−1 for kapenta in
Lake Kariba. Cochrane [10] and Marshall [11] concluded
that catches of Limnothrissa miodon vary seasonally with
availability of food. ,e fish are more abundant after
turnover in August to September and after the annual
flooding of the inflowing rivers in April and May. Marshall
[11] also concluded the existence of a possible relationship
between the sardine biomass and fishing effort. In their study
on the impact of fishing pressure on kapenta production on
the Zambian side of Lake Kariba, Chali et al. [2] concluded
that both catch per unit effort (CPUE) and kapenta pro-
duction were declining significantly. Kapenta production
and CPUE decreased from 9993 tonnes (t) and 0.145 t/boat/
night to 6004 t and 0.085 t/boat/night from 2009 to 2012,
respectively.,e fishing effort increased from about 68734 to
70706 boat nights from 2009 to 2012, respectively. CPUE is
an indirect measure of kapenta abundance in the lake and so
a decreasing CPUE shows overexploitation of the sardine.
On the Zambian side of the lake, the fishing units increased
from 423 in 2009 to 800 in 2013 and this could have led to the
decline in the kapenta stocks and overexploitation of the
sardine. ,e low kapenta catches were as a result of a huge
rise in the fishing effort which was more than the 500
recommended rigs for the whole lake [12].

Machena et al. [13] from their study on the preliminary
assessment of the trophic structure of Lake Kariba concluded
that the fishing mortality of Limnothrissa miodon could be
increased since it is fairly harvested. Magadza [14] in his
study estimated a maximum sustainable yield (MSY) of
kapenta to be 40000 t and concluded that the catches of
kapenta in the fishery increased logistically from 1974 to
about 1990, where the highest catch of 37000 t was recorded
and then decreased thereafter. Madamombe [15] for the
period 1974 to 1999 used the Pella and Tomlinson pro-
duction model and obtained a maximum sustainable yield of
23336 t with a corresponding effort of 725 rigs. Mudenda
[16] estimated MSY with the Schaeffer and Fox models and
obtained 23525 t and 24271 t with a corresponding fishing
effort of 108109 and 141243 boat nights, respectively.
Mudenda [16] concluded that there was overfishing in the

fishery ranging from 21% − 39%. Tendaupenyu and Pyo [17]
for the study period 1988 − 2009 used a maximum entropy
model and estimated a MSY of 25372 t with a corresponding
fishing effort of 109731 boat nights and they concluded that
there was overcapacity in Lake Kariba and that the kapenta
stock was in decline. ,e analytical model used by Ten-
daupenyu and Pyo [17] estimated a fishing mortality of 1.21
year−1 compared to the current 0.927 year−1. Tendaupenyu
and Pyo [17] used a maximum entropy model and estimated
an intrinsic growth rate of 0.42 and a carrying capacity of
240500 t for kapenta in Lake Kariba. Tendaupenyu and Pyo
[17] estimated a catchability coefficient of 0.00000153 for
kapenta from the Walters and Hilborn model. Dynamical
systems have not been used to investigate how kapenta fish
populations in Lake Kariba are described and influenced by
harvesting. We will be able to quantitatively explain the
impact of kapenta fish harvesting by developing and ana-
lyzing a mathematical model.

,e important question is what levels of the fishing effort
will lead to a sustained population density of Limnothrissa
miodon in the lake and what fishing pressure will result in
the extinction of the natural resource. Many fish harvesting
models have been formulated and analysed [18–20] and they
mainly differ in the harvesting function.

,e remainder of this paper describes the study area,
data collection, model formulation, positivity and existence
of solutions, equilibrium states and their stability, and op-
timal control in Section 2. ,e results which include nu-
merical simulations and analysis are presented in Section 3, a
detailed discussion is in Section 4, and conclusions are in
Section 5.

2. Materials and Methods

2.1. Study Area. Lake Kariba is located on the Zambezi
River, in a tropical area with seasonal rainfall between lat-
itudes 1628′ to 1804′ S and longitudes 2642′ to 2903′ E [15].
,e offshore single-species pelagic kapenta fishery is highly
mechanized, using light attraction and lift nets from boats,
and is licensed [21]. According to the 2011 Frame survey
[22], the fishing units on the Zimbabwean and Zambian
sides of Lake Kariba have similar technical efficiencies and
harvesting systems. Large circular dip nets andmercury light
bulbs are used in the fishing gear to attract the kapenta. ,e
lights used below and above the lake’s surface are powered
by generators, the number of which varies from rig to rig. To
lower or raise the dip net, hydraulic, mechanical, or manual
winches are used [8].

2.2. Data Collection. ,e Lake Kariba Fisheries Research
Institute collects data on catch, effort in the experimental
gillnet, and inshore artisanal and offshore kapenta fisheries.
,e catch data is measured in metric tonnes (wet weight)
and fishing effort is the number of nights fished.,e CPUE is
the kapenta catch that is landed by a boat after a night of
fishing and is measured in tonnes/boat/night. It is an im-
portant parameter in fisheries management as it is an in-
dicator of fish abundance and economic performance of the

2 Discrete Dynamics in Nature and Society



fishery [8]. ,e University of Zimbabwe Lake Kariba Re-
search Institute collects data on the lake’s water quality. ,e
data on acoustic surveys of the biomass of kapenta are not
often collected because of the lack of equipment and the cost
involved and as such a few fishery surveys have been done on
Lake Kariba using research vessels. ,erefore, data on the
biomass of the aquatic ecosystem of Lake Kariba are only
limited to the hydroacoustic surveys of 1981, 1982, and 1983
[23]; September 1988 [24]; 1992 [25]; and for the period
from 14 to 24 August 2014 [26]. Some data on phyto-
plankton, zooplankton, and kapenta in Lake Kariba were
obtained from Ndebele-Murisa [21]. Some data is missing
due to the fact that some of the fish caught in the offshore
fishery are sold to buyers by the fishers before they come
back to land and therefore are not recorded. As much as 30%
of kapenta catch is thought to be sold illegally by boat crews
before landing without the knowledge of the owners of the
fishing vessels [27].

Figure 1(a) shows the time series plot of total nitrogen
and chlorophyll a in μgl− 1 in Lake Kariba from November
2016 to December 2017. ,e monthly averages of total ni-
trogen and chlorophyll a in Lake Kariba from April 2014 to
December 2017 are illustrated in Figure 1(b). Figures 1(c)
and 1(d) show the time series plot from November 2016 to
December 2017 and the monthly averages fromApril 2014 to
December 2017 of zooplankton in Lake Kariba in individuals
per litre (ind./l), respectively.

Figure 2(a) shows the number of fishing vessels on the
Zimbabwean side of Lake Kariba from 2008 to 2018. ,e
time series plot shows a gradual increase in the number of
units from 307 in 2008 to 530 in 2018. Figure 2(b) shows the
number of fishing units on the Zambian and Zimbabwean
sides of the lake from 1994 to 1999.

Figure 3(a) illustrates the time series plot of Limnothrissa
miodon catches and the CPUE from November 2016 to
December 2017. ,e catch and CPUE monthly averages for
the period 1974 to 2018 are shown in Figure 3(b).
Figures 3(a) and 3(b) are for the Zimbabwean side of the
lake. Figure 3(b) shows a small peak in the catches of kapenta
around March and a big peak around August. ,e peak in
March is attributed to the inflow of nutrients through the
inflowing rivers and the flooding of the Zambezi river and
the one in August is due to the reloading of nutrients after
the mixing of the lake around July.

,e catches of kapenta versus effort are shown in
Figure 3(c). Figure 3(d) shows the effort, catch, and the
CPUE of kapenta from 1974 to 2011. Figures 3(c) and 3(d)
show data from both the Zambian and Zimbabwean sides of
Lake Kariba. For the period 1974 to 2011, the global max-
imum is at an effort of 104131 boat nights giving a catch of
30943 t in 1990.

2.3.Model Equations. ,emodel has four classes: N denotes
nutrient concentration, P denotes phytoplankton pop-
ulation density, Z denotes zooplankton population density,

and L denotes Limnothrissa miodon population density.
Densities in each class are time-dependent and are denoted
by N(t), P(t), Z(t), and L(t), respectively.,e Limnothrissa
miodon model [28] is extended to include harvesting by the
fishing vessels. Nutrients are assumed to enter the water
body sinusoidally at the rate

a 1 + b sin ωt + φ1( 􏼁 + c sin 2ωt + φ2( 􏼁( 􏼁, (1)

where a, b, c> 0 are constants, φ1 and φ2 are phase angles,
and ω is the angular frequency, a constant. φ2 captures the
delay in the lake mixing, ω is the frequency of the periodic
input of nutrients, and ab and ac are the overall amplitude
of the first and second nutrient periodic inputs, respec-
tively. ,e first term of (1) represents the inflow of nu-
trients from river inflow and runoff and the second term
of (1) captures the nutrient reloading into the lake which
occurs around mid-year. ,e sinusoidal function in (1) is
chosen for its simplicity and its parameters are to be
determined by fitting. Natural depletion of nutrients
occurs at a constant rate μ0. Phytoplankton depletes
nutrients at a rate of σ1NP. ,e rate of growth of phy-
toplankton is ϕ1σ1NP. It is assumed that the depletion
rate of phytoplankton caused by mortality is proportional
to P. ,e change in density of the phytoplankton per unit
time per zooplankton as the phytoplankton population
density changes is of the modified Holling’s type-I re-
sponse [29] and is denoted by σ2PZ [29]. ,e conversion
coefficient from phytoplankton to zooplankton is ϕ2. It is
assumed that the rate of zooplankton depletion caused by
mortality is proportional to Z. ,e functional response of
zooplankton to the Limnothrissa miodon given by σ3ZL is
of the modified Holling’s type-I response, which refers to
the change in zooplankton density per unit time per
Limnothrissa miodon as the zooplankton population
density changes. ,e conversion coefficient from zoo-
plankton to Limnothrissa miodon is phi ϕ3. It is assumed
that the rate of Limnothrissa miodon depletion caused by
mortality is proportional to L, and the rate of depletion
caused by crowding is proportional to L2. Kapenta is
harvested at a rate G(t). ,e model structure improves on
the Limnothrissa miodon model in [28] and is shown in
Figure 4.

We assume the following:

(1) Catch per unit effort of kapenta is proportional to the
fish abundance, (G(t)/E)∝ L(t), and can be written
as G(t) � qEL(t) [18, 19], where q≥ 0 is a fixed
constant of proportionality called the catchability
coefficient and E � E(t)≥ 0 is the fishing effort per
unit time.

(2) Pelagic kapenta have schooling behaviour [18].
(3) Fishing using the rigs involves randomly searching

for fish.
(4) Every kapenta in the body of water has an equal

chance of being captured.
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Figure 1: Continued.
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Figure 1: (a) Time series plot of total nitrogen and chlorophyll a; (b) a plot of monthly averages of total nitrogen and chlorophyll a; (c) time
series plot of zooplankton; (d) a plot of monthly averages of zooplankton.
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Figure 2: (a) Time series plot of fishing units from 2008 to 2018. (b) Time series plot of fishing units from 1994 to 1999 [27].
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Figure 3: Continued.
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Figure 3: (a) Kapenta catch and CPUE time series plot; (b) a plot of monthly averages of kapenta catch and CPUE; (c) kapenta catch in Lake
Kariba time series plot; (d) a plot of effort and CPUE in Lake Kariba.
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,e nonlinear nonautonomous dynamical system with
Schaefer harvesting is
dN

dt
� a 1 + b sin ωt + φ1( 􏼁 + c sin 2ωt + φ2( 􏼁( 􏼁 − μ0N − σ1NP,

dP

dt
� ϕ1σ1NP − μ1P − σ2PZ,

dZ

dt
� ϕ2σ2PZ − μ2Z − σ3ZL,

dL

dt
� ϕ3σ3ZL − μ3L − σ30L

2
− qEL.

.

(2)

Model (2) initial condition is,

N(0) � ψ1(0), P(0) � ψ2(0),

Z(0) � ψ3(0), L(0) � ψ4(0),

ψi(0)> 0, i � 1, 2, 3, 4,

⎧⎪⎪⎨

⎪⎪⎩
(3)

and the mathematically feasible region is defined as

Ω � (N, P, Z, L) ∈ R4
|N≥ 0, P≥ 0, Z≥ 0, L≥ 0􏽮 􏽯. (4)

,e crowding of the Limnothrissa miodon population
coefficient is σ30 > 0. ,e constants of proportionality σi (i �

1, 2, 3) are positive and depletion rate coefficients are rep-
resented by μi (i � 0, 1, 2, 3).

2.4. Positivity of Solutions. We prove that, for positive initial
data for the model (2), the solutions will remain positive
∀t≥ 0.

Theorem 1. Let N(t)≥ 0, P(t)≥ 0, Z(t)≥ 0, L(t)≥ 0 be the
initial data.*en, solutions of N(t), P(t), Z(t), L(t) of model
(2) are positive ∀t≥ 0.

Proof. Based on the first equation of system (2) and
N(t) ∈ [0, T], it follows that

_N(t)≥ − μ0N(t) − σ1N(t)P(t), ∀t ∈ [0, T]. (5)

Consequently, we obtain

N(t)≥N(0)exp􏽚
t

0
−μ0 − σ1P(s)( 􏼁ds≥ 0, ∀t ∈ [0, T].

(6)

According to the second equation of system (2),
_P(t)≥ − μ1P(t) − σ2P(t)Z(t), ∀t ∈ [0, T]. (7)

,e direct integration of (7) yields

P(t)≥P(0)exp􏽚
t

0
−μ1 − σ2Z(s)ds( 􏼁≥ 0, ∀t ∈ [0, T]. (8)

According to the third equation of system (2),
_Z(t)≥ − μ2Z(t) − σ3Z(t)L(t), ∀t ∈ [0, T]. (9)

,e direct integration of (9) yields

Z(t)≥Z(0)exp􏽚
t

0
−μ2 − σ3L(s)( 􏼁ds≥ 0, ∀t ∈ [0, T].

(10)

Considering the variable L(t) ∈ [0, T], it follows from
the fourth equation of system (2) that

_L(t)≥ − L(t) μ3 + qE + σ30L(t)( 􏼁, ∀t ∈ [0, T]. (11)

,e direct integration of (11) yields

L(t)≥
μ3 + qE( 􏼁L(0)e

− μ3+qE( )t

μ3 + qE + σ30L(0) 1 − e
− μ3+qE( )t

􏼒 􏼓

≥ 0, ∀t ∈ [0, T].

(12)

30L2 (t)

ϕ33Z (t) L (t)

ϕ11N (t) Z (t)

ϕ22N (t) P (t)

3L (t)

2Z (t)

1P (t)

0N (t)

L (t)

Z (t)

P (t)

N (t)

G (t)

(1 + b sin(t + 1) + c sin(2t + 2))

Figure 4: Flow diagram of the Limnothrissa miodon model with
harvesting.
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As a result, system solutions of (2) with initial conditions
(3) remain positive ∀t≥ 0. □

2.5. Existence of Solutions

Theorem 2. A solution of system (2) is feasible.

Proof. We show that all feasible solutions of system (2) are
uniformly bounded inΩ ⊂ R4. Let any solution of system (2)
be (N(t), P(t), Z(t), L(t)) ∈ R4􏼈 􏼉, with nonnegative initial
conditions.

Let C(t) � N(t) + P(t) + Z(t) + L(t), and then

dC

dt
� a 1 + b sin ωt + φ1( 􏼁 + c sin 2ωt + φ2( 􏼁( 􏼁 − μ0N − σ1NP + ϕ1σ1NP − μ1P − σ2PZ + ϕ2σ2PZ

− μ2Z − σ3ZL + ϕ3σ3ZL − μ3L − σ30L
2

− qEL,

� a 1 + b sin ωt + φ1( 􏼁 + c sin 2ωt + φ2( 􏼁( 􏼁 − μ0N − μ1P − μ2Z − μ3 + qE( 􏼁L − σ30L
2

+ σ1 ϕ1 − 1( 􏼁NP + σ2 ϕ2 − 1( 􏼁PZ + σ3 ϕ3 − 1( 􏼁ZL,

≤ a 1 + b sin ωt + φ1( 􏼁 + c sin 2ωt + φ2( 􏼁( 􏼁 − μ0N − μ1P − μ2Z − μ3 + qE( 􏼁L,

≤ a 1 + b sin wt + φ1( 􏼁 + c sin 2wt + φ2( 􏼁( 􏼁 − mC(t),

(13)

where m � min (μ0, μ1, μ2, μ3 + qE)􏼈 􏼉. ,us,

dC(t)

dt
+ mC(t)≤ a 1 + b sin ωt + φ1( 􏼁 + c sin 2ωt + φ2( 􏼁( 􏼁.

(14)

Equation (14) is a first-order differential inequality, with
the solution given by

0<C(N, P, Z, L)≤
a bm

4 sin tω + φ1( 􏼁 + 4bm
2ω2 sin tω + φ1( 􏼁 + cm

4 sin 2tω + φ2( 􏼁 + cm
2ω2 sin 2tω + φ2( 􏼁􏼐 􏼑

m
5

+ 5m
3ω2

+ 4mω4

−
a bmω m

2
+ 4ω2

􏼐 􏼑cos tω + φ1( 􏼁 + 2cmω m
2

+ ω2
􏼐 􏼑cos 2tω + φ2( 􏼁 + m

4
+ 5m

2ω2
+ 4ω4

􏼐 􏼑

m
5

+ 5m
3ω2

+ 4mω4 + C0e
− mt

,

(15)

as t⟶∞, (15) becomes

0<C(N, P, Z, L)≤
a bm

4 sin tω + φ1( 􏼁 + 4bm
2ω2 sin tω + φ1( 􏼁 + cm

4 sin 2tω + φ2( 􏼁 + cm
2ω2 sin 2tω + φ2( 􏼁􏼐 􏼑

m
5

+ 5m
3ω2

+ 4mω4

−
a bmω m

2
+ 4ω2

􏼐 􏼑cos tω + φ1( 􏼁 + 2cmω m
2

+ ω2
􏼐 􏼑cos 2tω + φ2( 􏼁 + m

4
+ 5m

2ω2
+ 4ω4

􏼐 􏼑

m
5

+ 5m
3ω2

+ 4mω4 .

(16)

,erefore, all solutions of system (2) enter the feasible
region,
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Ω � (N(t), P(t), Z(t), L(t)) ∈ R4
+: C≤􏽮

a bm
4 sin tω + φ1( 􏼁 + 4bm

2ω2 sin tω + φ1( 􏼁 + cm
4 sin 2tω + φ2( 􏼁 + cm

2ω2 sin 2tω + φ2( 􏼁􏼐 􏼑

m
5

+ 5m
3ω2

+ 4mω4

−
a bmω m

2
+ 4ω2

􏼐 􏼑cos tω + φ1( 􏼁 + 2cmω m
2

+ ω2
􏼐 􏼑cos 2tω + φ2( 􏼁 + m

4
+ 5m

2ω2
+ 4ω4

􏼐 􏼑

m
5

+ 5m
3ω2

+ 4mω4 +ς,∀ς> 0􏼩.

(17)

,is concludes the theorem’s proof. □

2.6. Equilibrium States for the Autonomous Model. Of bio-
logical interest is the coexistence equilibrium. If b � c � 0 in
system (2), then the model is autonomous and has a unique
coexistence equilibrium, E∗ � (N∗, P∗, Z∗, L∗), which is
obtained through the solution of the equations:

a − μ0N − σ1NP � 0, (18)

ϕ1σ1N − μ1 − σ2Z � 0, (19)

ϕ2σ2P − μ2 − σ3L � 0, (20)

ϕ3σ3Z − μ3 − qE − σ30L � 0. (21)

Solving for N, P, Z, and L in (18)–(21) gives

σ1σ2σ3σ30 L
∗

( 􏼁
2

+ σ1σ2σ3 μ3 + qE( 􏼁 + σ1σ2μ2σ30 + μ0σ
2
2ϕ2σ30 + μ1σ1σ

2
3ϕ3􏼐 􏼑L

∗

+ μ0μ1ϕ2σ2ϕ3σ3 + μ1σ1μ2ϕ3σ3 + μ0σ
2
2ϕ2 μ3 + qE( 􏼁 + σ1σ2μ2 μ3 + qE( 􏼁 − aϕ1σ1ϕ2σ2ϕ3σ3 � 0.

(22)

If expression (24) is positive, (23) will have a unique
positive root:

L
∗

�

����������������

A
2
1 − 4σ1σ2σ3σ30A2

􏽱

− A1

2σ1σ2σ3σ30
> 0, (23)

where

A1 � σ1σ2σ3 μ3 + qE( 􏼁 + σ1σ2μ2σ30 + μ0σ
2
2ϕ2σ30 + μ1σ1σ

2
3ϕ3,

A2 � μ0μ1ϕ2σ2ϕ3σ3 + μ1σ1μ2ϕ3σ3 + μ0σ
2
2ϕ2 μ3 + qE( 􏼁 + σ1σ2μ2 μ3 + qE( 􏼁 − aϕ1σ1ϕ2σ2ϕ3σ3.

(24)

And (23) can be written as

A
2
1 − 4σ1σ2σ3σ30A2 >A

2
1,

σ1σ2σ3σ30A2 < 0,

σ1σ2σ3σ30( 􏼁 μ0μ1ϕ2σ2ϕ3σ3 + μ1σ1μ2ϕ3σ3 + μ0σ
2
2ϕ2 μ3 + qE( 􏼁 + σ1σ2μ2 μ3 + qE( 􏼁 − aϕ1σ1ϕ2σ2ϕ3σ3􏼐 􏼑< 0,

σ2 μ3 + qE( 􏼁 μ0σ2ϕ2 + σ1μ2( 􏼁<ϕ3σ3 aϕ1σ1ϕ2σ2 − μ0μ1ϕ2σ2 + μ1μ2σ1( 􏼁( 􏼁,

μ3 + qE

ϕ3σ3
<

aϕ1σ1ϕ2σ2 − μ0μ1ϕ2σ2 + μ1μ2σ1( 􏼁

σ2 μ0σ2ϕ2 + σ1μ2( 􏼁
.

(25)
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,erefore, L∗ exists whenever

aϕ1σ1ϕ2σ2 − μ0μ1ϕ2σ2 + μ1μ2σ1( 􏼁

σ2 μ0σ2ϕ2 + σ1μ2( 􏼁
>
μ3 + qE

ϕ3σ3
. (26)

,e equilibrium E∗ is

N
∗

�
σ1σ2σ3 μ3 + qE( 􏼁 − μ2σ1σ2σ30 − μ0σ

2
2σ30ϕ2 + μ1σ1σ

2
3ϕ3 +

��������

4A3 + A
2
4

􏽱

2σ21σ
2
3ϕ1ϕ3

,

P
∗

�
−σ1σ2σ3 μ3 + qE( 􏼁 + μ2σ1σ2σ30 − μ0σ

2
2σ30ϕ2 − μ1σ1σ

2
3ϕ3 +

��������

4A3 + A
2
4

􏽱

2σ1σ
2
2σ30ϕ2

,

Z
∗

�
σ1σ2σ3 μ3 + qE( 􏼁 − μ2σ1σ2σ30 − μ0σ

2
2σ30ϕ2 − μ1σ1σ

2
3ϕ3 +

��������

4A3 + A
2
4

􏽱

2σ1σ2σ
2
3ϕ3

,

L
∗

�
−σ1σ2σ3 μ3 + qE( 􏼁 − μ2σ1σ2σ30 − μ0σ

2
2σ30ϕ2 − μ1σ1σ

2
3ϕ3 +

��������

4A3 + A
2
4

􏽱

2σ1σ2σ3σ30
,

(27)

where

A3 � aσ21σ
2
2σ

2
3σ30ϕ1ϕ2ϕ3,

A4 � σ1σ2σ3 μ3 + qE( 􏼁 − σ2σ30 μ2σ1 + μ0σ2ϕ2( 􏼁 + μ1σ1σ
2
3ϕ3.

(28)

From equation array (27), it follows that

N
∗

�
σ1σ2σ3 μ3 + qE( 􏼁 − μ2σ1σ2σ30 − μ0σ

2
2σ30ϕ2 + μ1σ1σ

2
3ϕ3 +

��������

4A3 + A
2
4

􏽱

2σ21σ
2
3ϕ1ϕ3

,

P
∗

�
σ1σ

2
3ϕ1ϕ3N

∗
− σ2σ3 μ3 + qE( 􏼁 + μ2σ2σ30 − μ1σ

2
3ϕ3

σ22σ30ϕ2
,

Z
∗

�
σ2σ30ϕ2P

∗
+ σ3 μ3 + qE( 􏼁 − μ2σ30

σ23ϕ3
,

L
∗

�
σ3ϕ3Z

∗
− μ3 + qE( 􏼁

σ30
.

(29)

,e coexistence equilibrium, E∗ � (0.134444, 503.68,

0.0694424, 128.578), for the autonomous model (2), with
damped oscillations for the set of default parameters a � 618.8,
μ0 � 0.2924, σ1 � 9.13751, ϕ1 � 1, μ1 � 0.974667, σ2 � 3.655,
ϕ2 � 1, μ2 � 0.30458, σ3 � 14.31542, σ30 � 0.000152, ϕ3 � 1,
μ3 � 0.834558, q � 0.00000918, and E � 15250, are shown in
Figure 5.

2.7. StabilityAnalysis for theAutonomousModel. If b � c � 0
in system (2), then the model has a unique coexistence
equilibrium E∗ which is locally stable.

Theorem 3. If the equilibrium E∗ exists, then it is locally
asymptotically stable if the conditions in (39) are met.
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Proof. ,e stability of the equilibrium states of model (2) are
determined by the Jacobian matrix [30], J, of system (2):

J �

−μ0 − σ1P −σ1N 0 0

ϕ1σ1P ϕ1σ1N − μ1 − σ2Z −σ2P 0

0 ϕ2σ2Z ϕ2σ2P − μ2 − σ3L −σ3Z

0 0 ϕ3σ3L ϕ3σ3Z − μ3 − qE − 2σ30L

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (30)

Evaluating J at E∗ results in

JE∗
�

−μ0 − σ1c5 −σ1c4 0 0

ϕ1σ1c5 ϕ1σ1c4 − μ1 − σ2c6 −σ2c5 0

0 ϕ2σ2c6 ϕ2σ2c5 − μ2 − σ3c7 −σ3c6
0 0 ϕ3σ3c7 ϕ3σ3c6 − μ3 − qE − 2σ30c7

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (31)

where c4 � N∗, c5 � P∗, c6 � Z∗, and c7 � L∗. ,en, (31)
simplifies to

12
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Figure 5: Time series plot of (a) nutrients; (b) phytoplankton; (c) zooplankton; (d) Limnothrissa miodon for system (2) for model (2) with
b � c � 0 and assumed initial condition: N(0) � 10, P(0) � 7, Z(0) � 4, L(0) � 2 using the default parameter values.
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JE∗
�

−μ0 − σ1c5 −σ1c4 0 0

ϕ1σ1c5 0 −σ2c5 0

0 ϕ2σ2c6 0 −σ3c6
0 0 ϕ3σ3c7 ϕ3σ3c6 − μ3 − qE − 2σ30c7

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (32)

,e eigenvalues of (32) are the roots of the auxiliary
equation

Δ(λ) � c6c7σ
2
3 λ2 + λμ0 + c5σ1 λ + c4σ1ϕ1( 􏼁􏼐 􏼑ϕ3 + λ λ2 + λμ0 + c5σ1 λ + c4σ1ϕ1( 􏼁􏼐 􏼑􏼐

+c5c6 λ + μ0 + c5σ1( 􏼁σ2ϕ2􏼑 λ + μ3 + qE + 2c7σ30 − c6σ3ϕ3( 􏼁 � 0.
(33)

,e auxiliary (33) can be expressed as follows:

Δ(λ) � λ4 + a1λ
3

+ a2λ
2

+ a3λ + a4 � 0, (34)

where

a1 � μ0 + μ3 + qE + c5σ1 + 2c7σ30 − c6σ3ϕ3,

a2 � c5qEσ1 − c6μ0σ3ϕ3 + c5μ3σ1 + 2c7μ0σ30 + c4c5σ
2
1ϕ1 − c5c6σ3σ1ϕ3

+ c5c6σ
2
2ϕ2 + c6c7σ

2
3ϕ3 + 2c5c7σ30σ1 + qEμ0 + μ0μ3,

a3 � c4c5σ
2
1ϕ1 −c6σ3ϕ3 + 2c7σ30 + qE + μ3( 􏼁 + c6 c5 σ22ϕ2 −c6σ3ϕ3 + 2c7σ30 + qE + μ0 + μ3( 􏼁􏼐 􏼑􏼐 􏼑

+c7σ1σ
2
3ϕ3􏼑 + c7μ0σ

2
3ϕ3 + c

2
5σ1σ

2
2ϕ2􏼑,

a4 � c5c6qEμ0σ
2
2ϕ2 + c

2
5c6qEσ1σ

2
2ϕ2 + c5c6μ0μ3σ

2
2ϕ2 + c

2
5c6μ3σ1σ

2
2ϕ2 + 2c5c6c7μ0σ30σ

2
2ϕ2

− c5c
2
6μ0σ3σ

2
2ϕ2ϕ3 + 2c

2
5c6c7σ1σ30σ

2
2ϕ2 − c

2
5c

2
6σ1σ3σ

2
2ϕ2ϕ3 + c4c5c6c7σ

2
1σ

2
3ϕ1ϕ3.

(35)

According to the Routh–Hurwitz criterion, all eigen-
values of the auxiliary (34) have negative real parts if

a1 > 0, a1a2 − a3 > 0, a3 a1a2 − a3( 􏼁 − a
2
1a4 > 0, a4 > 0. (36)

□

Remark 1. If the conditions b � c � 0 forE∗ are not satisfied
for a given set of parameter values, then the respective steady
state has a possibility of oscillatory behaviour for model (2).

Theorem 4. If the conditions in (42) for the Lyapunov
function in (40) are met, the equilibrium E∗ is globally as-
ymptotically stable.

Proof. ,e proof is based on Lyapunov’s secondmethod. Let
N − N∗ > 0, P − P∗ > 0, Z − Z∗ > 0, L − L∗ > 0. Let
V(N, P, Z, L) be a positive definite Lyapunov function [31]
such that V(N∗, P∗, Z∗, L∗) � 0 by

V(N, P, Z, L) � ξ1 N − N
∗

− N
∗ln

N

N
∗􏼒 􏼓 + ξ2 P − P

∗
− P
∗ln

P

P
∗􏼒 􏼓

+ ξ3 Z − Z
∗

− Z
∗ln

Z

Z
∗􏼒 􏼓 + ξ4 L − L

∗
− L
∗ln

L

L
∗􏼒 􏼓,

(37)

14 Discrete Dynamics in Nature and Society



where ξi
′s, i � 1, 2, 3, 4, are positive constants. V is a

positive definite function in the set Ψ, except at E∗ where
it is zero. ,e derivative of V with respect to solution of
system (2) is

_V � ξ1 N − N
∗

( 􏼁
_N

N
+ ξ2 P − P

∗
( 􏼁

_P

P
+ ξ3 Z − Z

∗
( 􏼁

_Z

Z
+ ξ4 L − L

∗
( 􏼁

_L

L
,

� −ξ1 N − N
∗

( 􏼁 μ0 + σ1P −
a

N
􏼔 􏼕 − ξ2 P − P

∗
( 􏼁 μ1 + σ2Z − ϕ1σ1N􏼂 􏼃

− ξ3 Z − Z
∗

( 􏼁 μ2 + σ3L − ϕ2σ2P􏼂 􏼃 − ξ4 L − L
∗

( 􏼁 μ3 + qE + σ30L − ϕ3σ3Z􏼂 􏼃.

(38)

,en _V< 0 if

μ0 + σ1P>
a

N
,

μ1 + σ2Z>ϕ1σ1N,

μ2 + σ3L>ϕ2σ2P, μ3 + qE + σ30L>ϕ3σ3Z.

(39)

,us, E∗ is globally asymptotically stable in the region
bounded by all points (N>N∗, P>P∗, Z>Z∗, L> L∗) in
(39). □

2.7.1. Fishing Effort. From model (2),

dL

dt
� ϕ3σ3ZL − μ3L − σ30L

2
− qEL. (40)

For the autonomous model (2), (43) at equilibrium is

qEL
∗

� ϕ3σ3Z
∗
L
∗

− μ3L
∗

− σ30L
∗(2)

. (41)

We let

h � ϕ3σ3Z
∗
L
∗

− μ3L
∗

− σ30L
∗(2)

, (42)

and zh/zL∗ � 0 yields

ϕ3σ3Z
∗

− μ3 − 2σ30L
∗

� 0, (43)

and ∴

h � qE
ϕ3σ3Z

∗
− μ3 − qE

2σ30
􏼠 􏼡, (44)

and z2h/zL∗(2) < 0 meaning h is the maximum sustainable
catch. For sustainability of the kapenta resource, the sus-
tainable fishing effort is

qE<ϕ3σ3Z
∗

− μ3. (45)

For the autonomous system, at equilibrium, the kapenta
catch is

h � qeL
∗

� 0.00000918 × 15250 × 128.578 � 18.00027711 μgl− 1
, (46)

and it is shown in Figure 6. ,e surface (colour green) is for
the equation h � ϕ3σ3Z∗L∗ − μ3L∗ − σ30L∗(2) and the sur-
face (colour magenta) is for the equation h � qEL∗.

Assuming the lake is at its capacity of 160 km3 and a
carrying capacity of 240500 tonnes obtained by Ten-
daupenyu and Pyo [17], 18.00027711 μgl− 1 of Limno-
thrissa miodon is an average monthly catch of 2889.05
tonnes and an average yearly total of 34668.59 tonnes.
From (43),

L
∗

�
ϕ3σ3Z

∗
− μ3

2σ30
. (47)

,e maximum sustainable catch, h, can be written as

h �
1

4σ30
ϕ3σ3Z

∗
− μ3( 􏼁

2
. (48)

h is a function of the variables in the food chain and
parameters and this result is a true reflection of what
happens in the lake as a result of the environmental factors
which are not constant. ,e maximum sustainable catch of
34668.59 t is within the range of the MSY of 25372 t obtained
by Tendaupenyu and Pyo [17] and MSY of 40000 t obtained
by Magadza [14].

2.8. Optimal Harvesting for the Autonomous Model. For
model (2) with b � c � 0, we formulate a Hamiltonian
function and apply Pontryagin’s maximum principle [32].
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The optima sustainable yield(OSY) � total revenue(TR) − total cost(TC), (49)

where TR and TC are the total revenue from selling har-
vested kapenta and the total cost of harvesting the kapenta,
respectively. For the harvesting function, h � qEL,

OSY � (αqL − β)E. (50)

,en,

J � 􏽚
∞

0
e

− δt
(αqL − β)E(t)dt (51)

is a continuous time inflow of revenue, α is the price per unit
of harvested kapenta, β is the utilised cost per unit effort, and
δ is annual discount rate in the price of kapenta. Our goal is
to maximize J subject to the equations in (18)–(21) and given
the control constraints 0<E<Emax. To determine the op-
timal level of equilibrium, we employ Pontryagin’s maxi-
mum principle [32]. For the autonomous model (2) and
(54), the Hamiltonian function is

H � e
− δt

(αqL − β)E + λ1(t) a − μ0N − σ1NP( 􏼁 + λ2(t) c1NP − μ1P − σ2PZ( 􏼁

+ λ3(t) c2PZ − μ2Z − σ3ZL( 􏼁 + λ4(t) c3ZL − μ3L − σ30L
2

− qEL􏼐 􏼑,
(52)

where c1 � ϕ1σ1, c2 � ϕ2σ2, c3 � ϕ3σ3, λ1, λ2, λ3 and λ4 are
adjoint variables and

σ(t) � e
− δt αqL

2
− β􏼐 􏼑 − λ4 qL

2
􏼐 􏼑 (53)

is a switching function [32]. ,e condition in (54) must be
met by the optimal control E that maximises H,

E �

Emax, σ(t)> 0; λ4e
δt < α −

β
qL

2􏼠 􏼡,

0, σ(t)< 0; λ4e
δt > α −

β
qL

2􏼠 􏼡,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(54)
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Figure 6: Plot of catch, Z(t) and L(t) at steady state.
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where α − β/qL2 is the net economic revenue from unit
kapenta harvest and λ4eδt is the shadow price [32]. ,e
optimal harvesting policy is

E �

Emax, σ(t)> 0,

0, σ(t)< 0,

E
∗
, σ(t) � 0,

⎧⎪⎪⎨

⎪⎪⎩
(55)

where E � Emax if the shadow price is less than the net
economic revenue on a unit kapenta harvest, E � 0 if the
shadow price is greater than the net economic revenue on a
unit kapenta harvest, and E � E∗ when the shadow price
equals the net economic revenue on a unit kapenta harvest
[32]. If σ(t) � 0, then zH/zE � 0, indicating that H does not
depend on E, the control variable, which is required for the
singular control E∗ to be optimal on the interval
0<E∗ <Emax [32]. Substituting σ(t) into (53),

λ4 � e
− δt α −

β
qL

2􏼠 􏼡. (56)

,e adjoint equations are

dλ1
dt

� −
zH

zN
,
dλ2
dt

� −
zH

zP
,
dλ3
dt

� −
zH

zZ
,
dλ4
dt

� −
zH

zL
. (57)

From the equations in (60),
dλ1
dt

� −λ1 μ0 − σ1P( 􏼁 − λ2c1P,

dλ2
dt

� −λ1 −σ1N( 􏼁 − λ2 c1N − μ1 − σ2Z( 􏼁 − λ3 c2Z( 􏼁,

dλ3
dt

� −λ2 −σ2P( 􏼁 − λ3 c2P − μ2 − σ3L( 􏼁 − λ4 c3L( 􏼁,

dλ4
dt

� −λ3 −σ3Z( 􏼁 − λ4 c3Z − μ3 − 2σ30L − qE( 􏼁 − αqEe
− δt

.

(58)

From (56),

dλ4
dt

� −δλ4. (59)

Substituting σ(t) � 0 in (53), we obtain

λ4 � α −
β

qL
2􏼠 􏼡e

− δt
. (60)

From (59) and the last equation of (58),

−δλ4 � −λ3 −σ3Z( 􏼁 − λ4 c3Z − μ3 − 2σ30L − qE( 􏼁 − αqEe
− δt

.

(61)

Substituting (60) into (61) results in

λ3 � e
− δt

α − β/qL
2

􏼐 􏼑􏼐 􏼑 c3Z − μ3 − 2σ30L − qE − δ( 􏼁 + αqE

σ3Z
⎡⎣ ⎤⎦.

(62)

Substituting (21) into (62) results in

λ3 � −e
− δt

α − β/qL
2

􏼐 􏼑􏼐 􏼑 δ + σ30L( 􏼁 − αqE

σ3Z
⎡⎣ ⎤⎦. (63)

And (63) is written as

λ3 � A1e
− δt

, (64)

where

A1 � −
α − β/qL

2
􏼐 􏼑􏼐 􏼑 δ + σ30Ls( 􏼁 − αqE

σ3Z
⎡⎣ ⎤⎦. (65)

From (67) and the third equation of (58),

−δA1e
− δt

� −λ2 −σ2P( 􏼁 − λ3 c2P − μ2 − 2σ3L( 􏼁 − λ4 c3L( 􏼁.

(66)

Substituting (20) into (66), we obtain

λ2 � −e
− δt

δA1 − α − β/qL
2

􏼐 􏼑􏼐 􏼑

σ2P
⎡⎣ ⎤⎦. (67)

And (67) is written as

λ2 � A2e
− δt

, (68)

where

A2 � −
δA1 − α − β/qL

2
􏼐 􏼑􏼐 􏼑

σ2P
⎡⎣ ⎤⎦. (69)

From equation (71) and the second equation of (58),

−δA2e
− δt

� λ1σ1N − λ3c2Z. (70)

Substituting (20) into (66), we obtain

λ1 � −e
− δt δA2 − A1c2Z

σ1N
􏼢 􏼣. (71)

And (67) is written as

λ1 � A3e
− δt

, (72)

where

A3 � −
δA2 − A1c2Z

σ1N
􏼢 􏼣. (73)

From (72), the first equation of (18), and (58),

−δA3e
− δt

� −λ1
−a

N
􏼒 􏼓 − λ2c1P. (74)

A3 �
c1PA2

a/N + δ
. (75)

Substituting the values of A2, A1 into (75), we obtain
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E �
αqL

2
− β􏼐 􏼑 (a + δN) c2Pσ2Z δ + σ30L( 􏼁 + δ δ2 + σ3Z + δσ30L􏼐 􏼑􏼐 􏼑 + c1Pσ1N

2 σ3Z + δ δ + σ30L( 􏼁( 􏼁􏼐 􏼑

αq
2
L
2

(a + δN) δ2 + c2Pσ2Z􏼐 􏼑 + c1δPσ1N
2

􏼐 􏼑
. (76)

,e optimal solution (Nδ, Pδ, Zδ, Lδ) and the optimal
harvesting effort E � Eδ are obtained by solving (18)–(21)
with (76). Solving (18)–(21) and (76) using the same default
parameter values and with α � 0.86, β � 0.001, and δ � 0.12,
we obtain the optimal equilibrium
(Nδ, Pδ, Zδ, Lδ) � (0.13448, 503.543, 0.0695343, 128.543)

and the optimal effort, E∗ � 15393.9 boat nights. ,e op-
timal number of boats is (15393.9/30.5) ≈ 505, in the Lake
Kariba fishery. Since the Zimbabwean and Zambian sides of
the Lake are in the ratio 0.55: 0.45, we therefore recommend

278 boats and 227 on the Zimbabwean and Zambian sides of
the kapenta fishery, respectively. ,e optimal number of
fishing units of 505 is in agreement with the recommended
500 in the Lake Kariba fishery [12]. ,e plot of kapenta for
different values of E is shown in Figure 7.

,e rate of change of E with α in (77) is positive implying
that if the price per unit of harvested kapenta increases the
effort increases, for fixed β. ,is means that as the price rises
of kapenta, the number of fishing vessels is likely to increase
in the fishery.

zE

zα
�
β (a + δx) c2pσ2w δ + σ30y( 􏼁 + δ δ2 + σ3w + δσ30y􏼐 􏼑􏼐 􏼑 + c1pσ1x

2 σ3w + δ δ + σ30y( 􏼁( 􏼁􏼐 􏼑

α2q2y2
(a + δx) δ2 + c2pσ2w􏼐 􏼑 + c1δpσ1x

2
􏼐 􏼑

. (77)

,e rate of change of E with β in (78) is negative im-
plying that if the utilised cost per unit effort increases the

effort decreases, for fixed α. If the cost of fishing rises, then
the number of fishing vessels in the fishery can decline.

zE

zβ
� −

(a + δx) c2pσ2w δ + σ30y( 􏼁 + δ δ2 + σ3w + δσ30y􏼐 􏼑􏼐 􏼑 + c1pσ1x
2 σ3w + δ δ + σ30y( 􏼁( 􏼁

αq
2
y
2

(a + δx) δ2 + c2pσ2w􏼐 􏼑 + c1δpσ1x
2

􏼐 􏼑
. (78)

3. Results

3.1. Data Fitting. ,e Fourier series equations (79)–(82)
were used in the data fitting.

f(t) �
a0

2
+ 􏽘

∞

n�1
an cos(nt) + 􏽘

∞

n�1
bn sin(nt), (79)

where

a0 �
1
π

􏽚
π

−π
f(t)dt, (80)

an �
1
π

􏽚
π

−π
f(t)cos(nt)dt, (81)

bn �
1
π

􏽚
π

−π
f(t)sin(nt)dt. (82)

and n � 1, 2, 3, 4, . . . [33].

A Fourier series with an order of fit of n � 2 in (83) was
used in MATLAB R2016a to estimate the parameters of the
total nitrogen data for the period from April 2014 to De-
cember 2017. ,e monthly averages from January to De-
cember were used in the data fitting.

f(t) � a0 + a1 cos(ωt) + b1 sin(ωt)

+ a2 cos(2ωt) + b2 sin(2ωt).
(83)

,e parameter estimates of (83) are shown in Table 1.
,e actual and fitted plots of monthly average total

nitrogen are shown in Figure 8.
,e fittedmodels in (83) goodness of fit statistics are sum

of squared estimate of errors (SSE) � 7.615 × 104,
R2 � 0.6095, and root mean square error (RMSE) � 112.7.

Factoring trigonometric functions in (83) using Wol-
fram Mathematica 11.0 results in

f(t) � 11.03(56.1015 + 10.9614 sin(0.0913563 + 0.6106t) − 5.21772 sin(0.878172 − 1.2212t)). (84)

and we obtain

18 Discrete Dynamics in Nature and Society



f(t) � 618.8(1 + 0.195385 sin(0.6106t + 0.0913563) + 0.0930049 sin(1.2212t + 0.878172)). (85)

,en (85) can be generalised as

f(t) � a 1 + b sin ωt + φ1( 􏼁 + c sin 2ωt + φ2( 􏼁( 􏼁. (86)

3.2. Numerical Simulations. Model parameters of system (2)
and their interpretations are shown in Table 2. Besides the
catchability coefficient q of L, the description, symbol, value,
and source of the parameters and coefficients in Table 2 are the
same as those used in the study by Mutasa et al. [28], except
that the parameters are monthly parameters. Numerical
simulations for system (2) are done in Wolfram Mathematica
11.0 using a fourth-order Runge–Kutta numerical scheme.
,e units of the variables N, P, Z, and L are μgl− 1.

3.2.1. Nonautonomous Model. For the set of the default
parameters, the phase portraits showing the time series of
nutrients, phytoplankton, zooplankton, and kapenta with
harvesting are shown in Figures 9(a)–9(d), respectively.
Figure 9 shows stable periodic solutions of period 1 cor-
responding to the default parameter values. For varying
initial conditions, all initial conditions lead to periodic so-
lutions. Different initial conditions lead to the same periodic
solution curve and therefore we have a stable limit cycle in
the phase space. ,e time series for zooplankton initially has
irregular fluctuations showing that the density of zoo-
plankton is highly variable and eventually stabilizes into a

periodic orbit after 40 months. ,is could be attributed to
the initial phase in the lake when the fishery started to
operate and then eventually stabilized after some time.

Figures 10(a)–10(b) show oscillatory dynamics in the
phase portraits of the nutrient and phytoplankton; phyto-
plankton and zooplankton; zooplankton and Limnothrissa
miodon; phytoplankton, zooplankton, and Limnothrissa
miodon dynamics for system (2), respectively. ,e phase
portraits show that the equilibrium point at
E∗ � (0.134, 503.68, 0.0694, 128.578) (point with colour
yellow) for the autonomous model is enclosed by the pe-
riodic solutions of the nonautonomous model, but the
system does not go to the equilibrium point.

3.2.2. Effects of Nutrients and Fishing Effort for the Non-
autonomous Model. For the set of the default parameters,
Figures 11(a) and 11(b) illustrate the effect of varying the
inflow of nutrients parameter a in model (2) on the dy-
namics of Limnothrissa miodon with E � 15250.
Figures 11(c) and 11(d) illustrate the effect of varying fishing
effort inmodel (2) on the dynamics of Limnothrissa miodon.

Simulation results from Figures 11(a)–11(d) show that the
abundance of Limnothrissa miodon is more closely related to
the availability of nutrients than to harvesting. Marshall [42]
and Paulsen [43] in their studies showed that the abundance
of Limnothrissa miodon is mainly due to river inflow and the
availability of food compared to harvesting.

Table 1: Fourier coefficients from data fitting.

Coefficient Estimate 95% confidence bounds
a0 618.8 (533.1, 704.6)

a1 11.03 (−166.4, 188.5)

b1 120.4 (4.689, 236.1)

a2 −44.29 (−195.6, 107.1)

b2 36.75 (−93.15, 166.6)

ω 0.6106 (0.4416, 0.7795)
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Figure 7: Time series of Limnothrissa miodon for varying fishing effort for model system (2) with E � 7625 (colour purple), E � 15250
(colour magenta), and E∗ � 15394 (colour blue).
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Table 2: Model parameters and their interpretations.

Symbol Definition Value Source
μ0 N natural depletion rate coefficient 0.2924month− 1

[34]σ1 P uptake rate of N 9.13751 l μg− 1month− 1

ϕ1 P conversion coefficient of N 1
μ1 P natural depletion rate coefficient 3.965, 0.976 − 2.44, 13.4505month− 1 [13, 35, 36]
σ2 Z grazing rate of P 18.3 − 42.7, 17.08, 3.05 − 21.045 l μg− 1month− 1 [13,37, 38]
ϕ2 Z conversion coefficient of P grazing 0.2 − 0.75, 1.5 [39, 40]
μ2 Z natural depletion rate coefficient 0.305, 1.6104month− 1 [13, 41]
σ3 L grazing rate of Z 14.335 l μg− 1month− 1

[13]σ30 L crowding effect coefficient 0.000152l μg− 1month− 1

ϕ3 L conversion coefficient of Z grazing 1
μ3 L natural mortality 0.2928, 0.2745, 0.7625 − 1.11935month− 1 [7, 9, 13]
q L catchability coefficient 0.00000153 [17]
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Figure 8: Monthly average of total nitrogen (μg / l) and fitted curve.
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Figure 9: Phase portrait showing the time series of (a) nutrients; (b) phytoplankton; (c) zooplankton; (d) Limnothrissa miodon for
model (2) and assumed initial condition: N(0) � 9.5, P(0) � 6.5, Z(0) � 3.5, L(0) � 1.5 (time series with colour green); N(0) � 10, P(0) �

7, Z(0) � 4, L(0) � 2 (time series with colour purple); N(0) � 10.5, P(0) � 7.5, Z(0) � 4.5, L(0) � 2.5 (time series with colour magenta);
using the default parameter.
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Figure 10: Continued.
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4. Discussion

We developed and examined the dynamics of a mathe-
matical model that includes nutrients, phytoplankton,
zooplankton, and Limnothrissa miodon in this paper. ,e
phytoplankton growth rate, phytoplankton mortality, phy-
toplankton grazing, zooplankton growth rate, zooplankton
mortality, grazing on zooplankton, and Limnothrissa mio-
don mortality are assumed to be Holling type-I forms.
,eoretical analysis, including the positivity and existence of
model solutions (2), is investigated. We obtained the au-
tonomous model’s critical points and examined their

stabilities. ,e equilibrium points’ local and global stability
conditions are established. ,e autonomous and nonau-
tonomous models were numerically simulated. ,e study’s
highlights are as follows:

(i) ,e application of a dynamical system to the food
chain, nutrients ⟶ phytoplankton ⟶ zoo-
plankton ⟶ Limnothrissa miodon, is used to
demonstrate the qualitative behavior of Limno-
thrissa miodon in the presence of harvesting.
Given a set of parameter values and initial con-
ditions, the phase portraits are damped oscillations
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Figure 10: Phase portrait showing the dynamics of (a) phytoplankton and nutrients; (b) zooplankton and phytoplankton; (c) Limnothrissa
miodon and zooplankton; (d) Limnothrissa miodon, zooplankton, and phytoplankton for model system (2) with assumed initial condition:
N(0) � 10, P(0) � 7, Z(0) � 4, L(0) � 2 using the default parameter values.
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for the autonomous model and show periodic
behavior for the nonautonomous model.

(ii) For the autonomous model’s local stability anal-
ysis, the theoretical results agree with the nu-
merical simulations in that the coexistence
equilibrium is stable if certain conditions are
satisfied. If the equilibrium E∗ is feasible, it is
globally unstable. Numerical results show that the
nonautonomous model in Lake Kariba has a stable
limit cycle.

(iii) Data fitting results for the period 2015 to 2017
show that there are two notable peaks in April and
August in Lake Kariba which correspond to the
inflow of nutrients from river inflow and runoff
and nutrient reloading, respectively.

(iv) ,e rate of nutrient inflow has a positive effect on
the Limnothrissa miodon abundance. Numerical
simulations of system (2) show that Limnothrissa
miodon abundance is negatively affected by
harvesting.
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Figure 11: (a) Time series of Limnothrissa miodon for varying a for model system (2); (b) 12-month average plot of Limnothrissa miodon
for varying a; (c) time series of Limnothrissa miodon for varying fishing effort for model system (2) with E � 0, E � 22875, and E � 38125;
(d) 12-month average plot of Limnothrissa miodon to fishing effort and with assumed initial condition: N(0) � 10, P(0) � 7, Z(0) �

4, L(0) � 2 using the default parameter values.
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(v) Abundance of Limnothrissa miodon has been
shown to vary seasonally in relation to food
abundance in Lake Kariba.

(vi) Optimal control results from the autonomous
model show 505 optimal fishing units, showing
that currently there is overcapacity in Lake Kariba.

(vii) A maximum sustainable annual catch of 34669
tonnes per year in Lake Kariba is obtained for the
autonomous model.

(viii) ,e Limnothrissa miodon will flourish in the lake
for model system (2) as long as the harvesting rate
is less than 34669 tonnes per year, with parameter
values as shown in Table 2. As a result, the har-
vesting rate is critical to Lake Kariba’s productivity.

(ix) Simulation results show that kapenta abundance is
more closely related to inflow of nutrients than to
harvesting.

5. Conclusions

,e basic kapenta model [28] is extended to include harvesting
by fishing vessels. ,e kapenta fishery in Lake Kariba provides
a significant source of income for many people in Zimbabwe
and Zambia. As a result, fishery management is critical to the
fishery’s long-term survival, as it is a major source of income
for fishing cooperatives, wholesalers, retailers, and the Lake
Kariba community. Many people use kapenta as a relish and a
source of protein. Lake Kariba kapenta fishing is in jeopardy
due to dwindling fish populations. Kapenta harvesting must be
done in a sustainable manner so that the resource does not
become extinct. As a result, mathematical modelling of the
kapenta model with harvesting provided us with insight into
the dynamics of the LakeKariba kapenta fishery.We developed
a mathematical model for kapenta harvesting with the goal of
ensuring that sustainable levels of kapenta are maintained.
Dynamical systems have not been used to investigate how
kapenta fish populations in a lake are described and influenced
by harvesting. We were able to qualitatively explain the impact
of harvesting by developing a mathematical model and ana-
lyzing it. Once we fully comprehend the dynamics, we will be
able to intervene in order to maintain sustainable levels of
kapenta fish. Currently there is overcapacity in Lake Kariba,
and the kapenta is being overexploited. Based on our optimal
control results, we recommend 505 fishing vessels, 278 for the
Zimbabwean side and 227 for the Zambian side of Lake Kariba.
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